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Summary

An improved analytical procedure has been developed that allows for an efficient solution of the finite
plate noise transmission problem. Both isotropic and symmetrically laminated composite plates are
considered. The plate is modeled with classic thin-plate theory and is assumed to be simply supported
on all four sides. The incident acoustic pressure is modeled as a plane wave impinging on the plate at an
arbitrary angle. The reradiated pressure is assumed to be negligible compared with the blocked pressure,
and the plate vibrations are calculated by a normal-mode approach. A Green’s function integral equation
is used to link the plate vibrations to the transmitted far-field sound waves, and transmission loss is
calculated from the ratio of incident to transmitted acoustic powers. The result is a versatile research
and engineering analysis tool that not only enables the determination of which modes are dominating the
noise transmission but also allows for the problem to be broken down into its component parts. This
includes determining what the modal behavior is, such as coupling between the incident noise and the
plate vibrations, the plate resonance behavior, and the coupling between the plate vibrations and the
transmitted noise. The effect of varying the angle of incidence and the far-field directivity can also be
determined from the analytical model. The analysis approach was specifically developed to study noise
transmission into aircraft, although it should be equally applicable to sound transmission through building
walls, floors, and windows.

Introduction

Noise transmission is an important consideration in the design of many structures, such as building
walls and floors, ship hulls, and aircraft sidewalls. Consequently, a variety of analytical models have been
developed over the years to predict the noise transmission characteristics of walls. These analytical models
may be further classified as either high-frequency-noise or low-frequency-noise models.

In high-frequency noise, the dimensions of the walls are very large compared with the relatively small
sound wavelengths, so the wall can be modeled analytically as infinite in extent. This is referred to as
“infinite-panel theory.” Noise transmission analytical models based on infinite-panel theory have been
extensively developed in the past (refs. 1 to 4) and dealt with such features as single-layer and multilayer
panels, oblique-incidence and random-incidence noise, and isotropic, orthotropic, and anisotropic panels.

In low-frequency noise, the dimensions of the transmitting wall are comparable with the large sound
wavelengths, so that boundary effects are important. In this approach, the wall is usually modeled as
a rectangular plate simply supported in an infinite baffie. This model is especially desirable because
it exhibits many of the same noise transmission phenomena that occur in more complicated structures
and that are more easily studied in this idealized problem. However, noise transmission models for this
problem have been much less studied. Most of the past work on this problem has been concentrated
on solving for the radiated noise or the radiation efficiency of the plate vibrations (refs. 5 to 11). Only
a few investigators have looked at the entire problem: the incident noise, the plate vibrations, and the
transmitted noise, and all these studies ended up with very limited and mainly qualitative results (refs. 12
to 16). This was invariably due to either the simplifying assumptions limiting the applicability of the
analysis or, in the opposite case, the lack of assumptions causing the mathematics to be very complicated.

In this paper, an improved analytical model that allows for the efficient calculation of the low-frequency-
noise transmission characteristics of a rectangular plate simply supported in an infinite baffle is developed.
The first section of the paper contains the derivation of the analytical model equations. First, the equation
for the transmission loss of the finite plate is derived. The paper starts with the basic equations describing
the incident noise and the plate vibrations and takes a step-by-step approach and derives the equations for
incident intensity, incident acoustic power, plate velocity, transmitted pressure, transmitted intensity, and
transmitted acoustic power. Transmission loss is then calculated from the ratio of transmitted to incident
acoustic power. This ratio is called the transmission coefficient. The general solution for transmission
loss includes the response of a large number of modes. To investigate the response of these individual
modes, equations are derived describing the component parts of the transmission coefficient of each mode.



The transmission coefficient is factored into the ratio of transmitted acoustic power to mean-square plate
velocity and the ratio of mean square plate velocity to incident acoustic power. This latter ratio is
then broken down into two more parts with equations being derived for the frequency response of the
plate vibrations and the frequency response of the exciting acoustic pressure. With the analytical model
equations having been derived for an isotropic plate, an extension of the model to handle midplane
symmetric composite panels is briefly discussed.

In the second section of the paper, results of sample calculations using the analytical model are shown.
First, polar plots of far-fleld transmitted intensity are shown for both low-frequency-noise and high-
frequency-noise transmission. Next are shown the results of sample calculations of transmission loss. The
finite-panel theory is compared with infinite-panel theory, and the variation of transmission loss with the
incidence angles is shown. Then, results are shown of a modal study of the noise transmission at 600 Hz
as an example of the use of the analytical model as a diagnostic tool. The model is used to determine
which modes are dominating the transmission at this frequency and whether this transmission is due to
coupling between the incident noise and the plate vibrations, to plate resonance behavior, or to coupling
between the plate vibrations and the space into which the plate is transmitting. Results are also presented
that demonstrate the applicability of the analytical model for studying the effect of fiber orientation on
the transmission loss of midplane symmetric composite panels.

Symbols

a length of plate, m

b width of plate, m

Cp equivalent viscous damping constant, N-sec/m

c speed of sound, m/sec

D bending stiffness for an isotropic plate, N-m

Dy1,Dyo, bending stiffnesses for an anisotropic plate, N-m

Dy¢, Doa,

Dqg, Deg

Eq1,E99 orthotropic elastic moduli in a composite-tape ply parallel and perpendicular
to the fibers, respectively, Pa

f frequency, Hz

fmn resonant frequency of a mode, Hz

Gio shear modulus for composite-tape ply, Pa

Im dummy variable which is a function of m and is equal to the integral over £ in
the Rayleigh integral

Im dummy variable which is a function of m and is equal to the integral over £ in
the equation for the generalized forcing pressure

In dummy variable which is a function of n and is equal to the integral over 7 in
the Rayleigh integral

In dummy variable which is a function of n and is equal to the integral over 7 in
the equation for the generalized forcing pressure

I transmitted intensity, N/m-sec

i =v-1




sgn ()

TL

Vm n

Wmn

LY,z

wave number, w/c, rad/m

number of half-wavelengths in direction parallel to length of plate

mass per unit area of plate, kg/m?

number of half-wavelengths in direction parallel to width of plate
amplitude of incident pressure, Pa

incident pressure, Pa

generalized forcing pressure, Pa

reflected pressure, Pa

transmitted pressure, Pa

radial distance from a point in the far field to the center of the plate, m

radial distance from a point in the far field to an arbitrary point on the
plate, m

sign (either 1 or —1) of the variable in parentheses
time, sec

transmission loss, dB

generalized plate velocity, m/sec

amplitude of displacement, m

transverse plate displacement, m

generalized displacement, m

Cartesian coordinates for a point in the far field (z is perpendicular to the
plate), m

critical damping ratio

polar angle location of a point in the far field, rad
polar incidence angle, rad

composite-tape-ply Poisson’s ratios

coordinates for a point on the plate, m

incident acoustic power, W

transmitted acoustic power, W

mass density of air, kg/m3

transmission coefficient

transmission coefficient for a mode

azimuthal angle location of a point in the far field, rad
azimuthal incidence angle, rad

circular frequency, rad/sec

del operator



Description of the Analytical Model

Incident Noise and Plate Vibration

With classic thin-plate theory, the equation of motion governing the bending vibrations of an isotropic
plate is

D V*w + Cpw,s + mpw,ee = pi(€,n,t) + p,(€,7,t) — pe(€,M,1) (1)

where

V4 =09*/0¢% 4+ 20*/0¢* an? + 8ot

A comma denotes the partial differentiation with respect to the subscript; p;, pr, and p; are the incident,
reflected, and transmitted pressures; and the geometry of the coordinate system is given in figure 1. These
three pressures can be rewritten as the sum of the blocked pressure (the pressure that occurs on the incident
side when the plate is considered as a rigid wall) and the reradiated pressure (the pressure solely due to
the plate vibrating). Because the reradiated pressure is an unknown function of the plate displacement
w, the solution of equation (1) is very complicated. This is the main reason past investigators have been
unable to arrive at effective, usable results. In order to arrive at an accurate solution while avoiding this
complication, the present analysis assumes that the reradiated pressure is negligible compared with the
blocked pressure in the equation of motion for the plate. With the infinite-panel theory, this assumption
results in errors of less than 1 dB for transmission loss values of 6 dB or more. Thus, the assumption
allows an accurate solution to be obtained over a large frequency range and gives invalid answers only for
frequencies near the plate fundamental resonant frequency.
Rewriting the equation of motion with only the blocked pressure as the forcing function results in

D Viw + Cpw, + mpw,ee = pp(&, 0, t) (2)

where the blocked pressure py, is twice the incident pressure (py(&,n,t) = 2p;(§,n,t)). Now the incident
pressure is assumed to be an obliquely incident traveling plane wave given by

pi(€,m,t) = P, exp [i (wt — k€ sin 6; cos ¢; — kn sinb; sin ¢;)] 3)

where the amplitude P; of the incident pressure is assumed to be a real constant, an assumption that
results in no loss of generality. The relationship between the incidence angles and the coordinate axes is
shown in figure 1. At this point the incident intensity and the incident acoustic power can be calculated.
Since the incident noise is a plane wave, it is well known the intensity is given by Pi2 /2pc (ref. 17). The
intensity incident on the plate is the amount of the intensity that is normal to the plate. Thus, the incident
intensity I; is given by

I; = (P? cos ;) /2pc (4)

The incident acoustic power II; is simply given by the incident intensity multiplied by the area it acts on,
that is, the area of the plate. Thus, II; is given by

I; = (P;"ab cosb;) /2pc (5)




The steady-state solution for the plate vibration displacement is the only part of the solution of concern
in predicting noise transmission; since the forcing pressure is harmonic, the steady-state plate displacement
will be harmonic such that

w(&;n,t) =W (&, n) exp(iwt) (6)
Substituting equations (3) and (6) into (2) and dividing through by exp (iwt) gives
D VAW (&,1) +iCpwW (€,1) — mpw?W (€, ) = 2P; exp [—ik sin §; (€ cos ¢; + 7 sin ¢;)] (N

The finiteness of the plate is now taken into consideration. The plate is assumed to be rectangular and
simply supported on all four sides. The solution of equation (7) can be obtained by using the method
of eigenfunctions (ref. 18). Homogeneously solving equation (7) by separation of variables and applying
simple-support boundary conditions gives

oo

Wit (72 ) sin (757 ®
=1

a

W(gn) =73

m=1n

Since the steady-state solution (see eq. (6)) must also satisfy the boundary conditions, equation (8)
can be used for the spatial part of the steady-state solution so long as the spatial part of the forcing
pressure can also be represented as an infinite series of the eigenfunctions. For the case at hand, the
forcing pressure can be so represented, and the result is

' T ' N 2 . [mm€\ | /nman
2P; exp [tk sin 6; (€ cos ¢; + nsin ¢;)] = mzzl 2 Dran SID (—a ) sin (—b——> (9)
where py,n, the generalized forcing pressure, is given by
. a b
Pmn = 8P / / exp [~k sin §; (€ cos ¢; + N sin ¢,)] sin (m_wf) sin (n_ﬂ'n) dn d¢ (10)
ab £€=0Jn=0 a b

The generalized displacement Wy, can now be obtained by substituting equations (8) and (9) into
equation (7) and obtaining

pm‘n
Wmn = . 1
g W2 = w2 + (iCpw/my)] (1
where
2 2 D7T4 m2 n2 2
Wi = (27 fimn)” = -—mp (27 + b_2) (12)

The integration in equation (10) can be done in closed form to obtain the generalized forcing pressure for
each mode

Pmn =8P, I, (13)



where

_%sgn (sin 0; cos ¢1) <

Im = ¢ mz {1 — (—=1)™ exp [~isin b; cos ¢;(wa/c)]} (
(mm)? — [sin 6, cos ¢;(wa/c))?

(

(

—%sgn (sin6; sin ¢;)
In={ nr{1 - (~1)" exp [—isin 0; sin ¢, (wb/c)]}
(n7)? — [sin6; sin ¢; (wb/c)]?

Thus, the solution for the plate vibrations is complete.

Transmitted Noise and Transmission Loss

(mm)? = [sin b, cos ¢¢(wa/c)]2)
(mm)? # [sin b, cos ¢,‘(wa/c)]2)
(nm)? = [sin 6, sin ¢¢(wb/c)]2>

(nm)? # [sin 6, sin ¢i(wb/c))?

The plate vibrations cause reradiated pressure to be transmitted by the plate. The equation relating
plate velocity to the transmitted pressure can be derived from a Green’s function formulation (ref. 19)
starting from the basic fluid flow conservation equations together with the Kirchoff-Helmholtz method of
integration. The resulting equation for transmitted pressure is commonly known as the Rayleigh integral

and is given by

a/2 b/2 . '] 1
Pt(T, 0., ¢) — / / l"iw EXp(——in'/c) d{l dn/
§'=-a/2Jn

[ '=—b/2 2mr! at

where

e

N o

and

TI — \/(I _ 6/)2 + (y _ nl)2 + 22
The transmission geometry is given in figure 2. Since
T=*/12+y2+22
z = rsinfcos ¢

and

y=rsinfsin¢

the equation for 7' can be rewritten as

r r

2sin 6 cos ¢ €\? 2sinfsin¢
' _ | Iditnldhautid Y s _ 4=AvsA e
r r\/ & +<'r>

2
(T
n T

(14)

(15)



The integral in equation (14) must be evaluated numerically. However, a closed-form solution for this
integral can be obtained in the far field. In the far field, the following approximations are valid (ref. 17):

]|

1
— &
r

and
exp(—iwr’/e) ~ exp [—i(w/c)r (1 _sin 0:os¢5, _ sinOSTin on )]

Thus, the far-field transmitted pressure is given by
a/2 b/2 ' ¢ . . .
iwp / dw( 5 n dw(¢',n',t) exp [—ikr (1 N sm0cos¢§, 3 smé?smqbn,)] dnf de’ (16)

b/2 r r

pe(r,0,¢) =

2rr —a/2

Plate motion is assumed to be continuous through the thickness of the plate so that w(§,n,t) is given

by equations (6) and (8). Thus,

(f mt) _ . [Z ZWmnmn(

m=1n=

E) sin (?)} exp(iwt) (17)

Substituting equation (17) into (16) allows a closed-form solution to be obtained for the Rayleigh integral

as follows:
—w?pab ind co oo
pe(r,0,9) = C;ﬂia exp {iw [t _ 2 - %(a cos ¢ + bsin¢)] } 2;1 ;Wmnlmln (18)
where
— $sgn(sin 0 cos ¢) ( = [sin # cos #(wa/c)] )
Iy = mm {1 — (=1)™exp[isinfcos ¢ wa/c } ( (m)? # [sin 6 cos ¢(wa/c)]2)
(mm)? — [sin 8 cos p(wa/c))’

— $sgn(sin fsin ¢) ( = [sin @ sin ¢(wb/c)] )
In = § nr {1 - (=1)"exp[isin O sin p(wb/c)]} < £ [sin 8sin ¢ (wb/<)] >

(nm)2 — [sin O sin ¢(wb/c)]’

Now, to calculate the far-field intensity, the far-field acoustic particle velocity must first be calculated

The equation for the velocity vector u(r, 8, ¢) is

'Z_ th(T, 07 ¢) = Ui, + ugis + u¢i¢ (19)

u(r,8,¢) =
where ir,ig, and iy are the unit vectors in the r-, 6-, and ¢-directions; ur, ug, and ug are the velocity
components in those directions; and

v 1o, L 9,
= o T 756" T ren0 65

In the far field, r will be large so that the radial component of velocity will be much larger than the
components of velocity in the ip- and i¢—directions. Thus, the far-field velocity is approximated by the



scalar uy. Substituting equation (18) into (19) and neglecting the 1/r% terms compared with the 1/r
terms gives

Ur = Pt/ﬂc (20)

If far-field pressure and velocity are known, the far-field transmitted intensity I; can be calculated by
substituting equation (20) into the basic definition of I; as follows:

L = JRelpu(r,0,6)u (1,0, ) (21)

where Re | | denotes the real part and the asterisk denotes the complex conjugate. The result of this is

I = |p(r, 60, 9)|*/2pc (22)

If we substitute for p;(r, 8, ¢) from equation (18), the equation for I; becomes

p <4Piab)2
It = —
2c \ wrmy,

[ >BE o}

Z an
=1

m=1n

2

where

LI 0.1,
(fomn/ ) = 14 20¢ frnn/ f

an -

and

C
c= D

2mpwmn

The transmitted acoustic power II; can now be calculated by integrating the transmitted intensity over a
far-field hemisphere such that

2m w/2
I, = / / I;r%sin 6 do do (25)
$=0 =0

This equation must be integrated numerically. Simpson’s one-third rule (ref. 20) was used in the
calculations that were done in conjunction with the present study. Finally, transmission loss (TL) is
calculated from

TL = 10log (1/7) (26)

where the transmission coefficient 7 is given by

T= Ht/nt (27)

Modal Components of Transmission

Presented here is a derivation of equations which can be used to study an individual mode’s noise
transmission characteristics. They can be used for both the characteristics of the total problem and the
characteristics of the different components of the problem.




First of all, for the total noise transmission response of a single mode, the following single-mode
equation for the transmission coefficient is used:

(7‘ )2 / /2/
mn
mp ) cosf; Jg 6=0

where, because of symmetry, integration over ¢ is necessary only from 0 to 7/2. This result can be used to
determine the frequency at which a mode is transmitting the most noise. To determine what part of the
total noise transmission is the primary cause of the transmission, the transmission coefficient is divided
into the following two multiplicative factors: the acoustic power transmitted divided by mean-square

velocity (Ht / |an|2) and the mean-square velocity divided by incident acoustic power <|an]2 / Hi) ,

where Viny, is the generalized plate modal velocity and is equal to 1wWpy,n. The equations corresponding
to these factors are

I I.01.1, 2
fmn/f) —1+21§fmn/f

d¢ sinf df (28)

‘I|'/2 7|'/22 2
I /|Vinn | / f f pa’h |I I,|?sin6 df d¢ (29)
¢=0 Jo=

and
32pc| LI, |?

|an|2/n‘i = 2
7T2f2ab cos 0im12, { [1 - (fmn/f)z] + (2§fmn/f)2}

With these two frequency-response functions, it can be determined whether the modal noise transmis-
sion is due more to coupling between the incident noise and the plate vibrations (eq. (30)) or more to
coupling of the plate vibrations with the space into which they are radiating (eq. (29)). For the case in
which the problem lies with coupling between the incident noise and the plate vibrations, the mean-square
velocity divided by incident power can be investigated in terms of the two main quantities which describe

its behavior, namely, the mean-square generalized force divided by incident power (|pmn|2 / Hi) and the

plate frequency response divided by incident power <|Pl-an /pmn)?/ Hi). The equations governing these
two quantities are

|Pmnl2/H1 = _II_mI_n|2 (31)

and

2pc

Pian mn 2 Hi =
| [l 47T2f2m12,ab<1050i {[1 - (fmn/f)]2 + (2§fmn/f)2}

(32)

The quantity |pmn|2 /II; indicates how much of the noise transmission is due to the frequency character-

istics of the incident noise; the quantity |P;Vinn/ pmnl?/ I1, indicates how much of the noise transmission
is due to the frequency characteristics of the plate vibrations.

Extension to Midplane Symmetric Composite-Material Plates

The major difference in modeling a midplane symmetric composite plate as opposed to an aluminum
plate is that the composite is allowed to be anisotropic. Because of this, the equation of motion shown
in equation (1) must be rewritten to account for the anisotropic stiffness terms, resulting in the following
equation of motion:



Diiw,eeee + 4D16W,geen + 2(Di2 + 2D66) Wigenn + 4D26w,ennn + D2aWinnnn + CDWit + Mpw e
= p‘i(Ea 7, t) + Pr(f, m, t) - pt(E’ m, t)

where a comma denotes the partial differentiation with respect to the subscript and the D;; terms are
the anisotropic bending stiffnesses that relate the internal bending and twisting moments of the plate
to the twists and curvatures they induce. The theory for calculating the stiffnesses of tape-ply panels is
well established (ref. 21), and the values depend on the ply orientation and the stacking sequence. For
a simply supported plate, Bert (ref. 22) has calculated an approximate equation for the modal resonant
frequencies, and sinusoidal eigenfunctions are used as approximations to the actual mode shapes. With
these frequencies and mode shapes, a noise transmission calculation for composite plates can be performed
in the same manner as for isotropic plates.

Results of Sample Calculations

Far-Field Transmitted Intensity

In order to carry out the numerical integration in equation (25) to obtain transmitted acoustic power,
an understanding of the variation of transmitted intensity is helpful in determining how small a step size is
needed to perform the integration. Presented in figures 3 and 4 are sample plots of the effect of frequency
on the intensity radiation pattern of a 1.52-m by 1.22-m by 0.081-cm aluminum plate. The results are
presented for an incident sound wave at 6; = 45° and ¢; = 0° for two frequencies of 100 Hz and 600 Hz.
Figure 3 shows the variation of transmitted intensity with polar angle @ for an azimuthal angle ¢ of 0°.
Figure 4 shows the variation of transmitted intensity with azimuthal angle ¢ for a polar angle 6 of 45°.
These sample results show a trend that was discerned from studying many transmitted-intensity results,
that is, as frequency increases, increasingly more of the transmitted sound becomes concentrated at a
transmitted angle equal to the incident angle. This results in a steeper variation of intensity with 6 and ¢
which, in turn, results in increasingly smaller integration steps being needed as frequency increases. The
sample results in figure 4 also display an example of the symmetry which can occur in the transmitted
intensity and which helps reduce the numerical integration time. As can be seen in equation (18), with
¢; = 0° the n-even modes contribute nothing to the transmitted intensity. Thus, in the n-direction of the
plate, only the odd modes contribute to the transmitted intensity, and this results in symmetry about
¢ = 0°. Similarly, for ¢; = 90°, symmetry occurs about ¢ = 90°; and, for ¢; = 0°, symmetry occurs
about both ¢ = 0° and ¢ = 90°. For any other 6, or ¢, symmetry cannot be shown a priori to occur
in the ¢-direction. An example of this is presented in figure 5, wherein a plot is shown of transmitted
intensity variation with ¢ for § = 20°,6, = 60°, ¢, = 47°, and f = 600 Hz.

For calculating two of the modal components of transmission <i.e.,7’mn and IT;/ |an|2> , numerical

integration is required. (See egs. (28) and (29).) Thus, a detailed investigation of the equation for
transmitted intensity was undertaken to determine if any special symmetry occurs for a single mode as
opposed to when all the modes are summed. It was found that symmetry occurs about both ¢ = 0° and
¢ = 90° no matter what the values of 6; and ¢;. This is very helpful information for saving computer time
during the numerical integration. An example of this ¢-direction symmetry for the transmitted intensity
of a single mode is presented in figure 6 for m = 1,n = 11,0 = 20°,6, = 60°, ¢, = 47°, and f = 600 Hz.

Transmission Loss

The oblique-incidence transmission loss of a 0.38-m by 0.15-m by 0.081-cm aluminum plate has been
calculated for an incident wave at 0, = 60° and ¢; = 0°. The results are presented in figure 7 along with
a transmission loss calculation based on infinite-panel theory. Although the two curves agree well at high
frequency (approximately 2000 Hz and above), for which the panel transmission is the mass-controlled
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and coincidence-frequency regions, considerable differences occur at lower frequencies. This is because
infinite-panel theory is appropriate only for those high-frequency transmission regions, whereas finite-
panel theory is appropriate not only for those regions but also for the low-frequency resonance-controlled
and stiffness-controlled transmission regions. Thus, the analytical model developed in this paper is most
useful in gaining new insight into the characteristics of noise transmission at low frequency. An example
of how the analytical model may be used is shown in figures 8 and 9. In figure 8, transmission loss as a
function of polar incidence angle 8; is shown for two sizes of 0.081-cm-thick aluminum plate, a 0.38-m by
0.15-m plate and a 1.52-m by 1.22-m plate. The azimuthal incidence angle ¢; was 0° and the frequency
was 600 Hz. The larger panel is slightly more sensitive to 6;, with about a 5-dB change from 6, = 60° to
6, = 0°. In figure 9 a similar comparison is plotted for transmission loss as a function of ¢; with 8; = 45°
and f = 600 Hz. Neither panel is very sensitive to ¢, for 6; = 45°. In both figures, the smaller panel
has higher transmission loss because the 600-Hz frequency is within the resonance-controlled transmission
region of the smaller panel and within the mass-controlled frequency region of the larger panel.

Modal Decomposition

A demonstration of how the analytical model might be used as a diagnostic tool to gain understanding
of a noise transmission problem is presented in this section. The problem, arbitrarily chosen, is the
transmission of noise at 600 Hz through a 1.52-m by 1.22-m by 0.081-cm aluminum plate for an incident
sound wave at §; = 60° and ¢; = 0°. As a first step, a trial-and-error modal study was done of the
transmitted intensity to determine which modes were the largest contributors. The results of this study
are summarized in figure 10, in which a plot of the square root of intensity as a function of polar angle 6
with ¢ = 0° is shown for the total intensity (for all the modes summed together) and for the two largest
modal contributors, the m = 5,n = 1 mode and the m = 4,n = 1 mode. Next, each mode was investigated
individually using the modal component equations (28) to (32) to try to determine the specific behavior
by which the mode was dominating the transmission. The results of the modal component calculations for
the m = 4,n = 1 mode are shown in figure 11. In figure 11(a), the ratio of transmitted power to incident
power is shown as a function of frequency. The large response near 600 Hz is clearly shown. The graphs of
the ratio of transmitted power to mean-square velocity (fig. 11(b)) and of the ratio of mean-square velocity
to incident power (fig. 11(c)) show that the high transmission of the plate at 600 Hz for the m = 4,n =1
mode is due more to coupling between the plate vibrations and the acoustic space into which the plate
is transmitting than to coupling between the incident sound and the plate vibrations. This coupling on
the transmitting side (the peak in fig. 11(b)) occurs at what is commonly referred to as the acoustic
short-circuit frequency. This is the minimum frequency for which there is some angle at which the trace
wavelength of a transmitted wave will equal the shorter of the two wavelengths of the mode. For all higher
frequencies, there will always be an angle for which this wavelength matching will occur, which is why the
curve in figure 11(b) flattens out after reaching the short-circuit frequency. In figures 11(d) and 11(e), the
breakdown of the ratio of mean-square velocity to incident power into its component parts, namely, the
frequency response of the incident noise (fig. 11(d)) and the frequency response of the plate vibrations
(fig. 11(e)), is shown and explains the main features of the response in figure 11(c). The peak near 20 Hz
in figure 11(c) can be shown in figure 11(e) to be due to the mode’s resonant frequency; the peak near
600 Hz in figure 11(c) can be shown to come from a peak in the curve in figure 11(d). The frequency at
which these peaks occur is called the coincidence frequency, and it corresponds to the matching of the
trace wavelength of the incident sound with the longer of the two wavelengths of the mode. This coupling
at the coincidence frequency also contributes to the high transmission at 600 Hz, but it is not as big a
contributor as the coupling at the short-circuit frequency.

The results of the modal component calculations for the m = 5,n = 1 mode are shown in figures 12(a)
to 12(e). Similar results as for the m = 4,n = 1 mode are again noted, with the coupling at the short-
circuit frequency (fig. 12(c)) playing the major role in the transmission and the coupling at the coincidence
frequency (figs. 12(b) and 12(d)) also contributing significantly.
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Thus, for the case just discussed, the analytical model facilitates the determination of which modes are
dominating the noise transmission and the physical phenomena causing the transmission. The discovery
that the physical mechanism involves the matching of wavelengths between the plate and the transmitted
noise could be helpful to noise-control engineers. For instance, at least one common method of noise
control, plate resonance damping, would be ineffective in this case.

Results for Composite Panels

To further demonstrate the usefulness of the analytical model, sample calculations for two composite
panels have been performed to determine the effect of the stacking sequence of the plies on the normal-
incidence transmission loss of the panels. The ply material was graphite-epoxy tape. The ply properties
were E11 = 137 GPa, E99 = 10 GPa, vj9 = 0.30, and G5 = 5 GPa. Each panel was assumed to be made
of eight plies layered in a midplane symmetric fashion. One panel, designated as GT1, was assumed to
have a symmetric stacking sequence of alternating 0° and 90° plies. The other panel, designated as GT2,
was assumed to have a symmetric stacking sequence of alternating 45° and —45° plies. The size of each
panel was 0.36 m by 0.20 m by 0.10 cm, with a mass per unit area of 1.59 kg/rn2 and a critical damping
ratio of 0.06. The results of the calculations are shown in figure 13. The panel GT2 has a 40-percent
increase in fundamental frequency over panel GT1 and thus has a much higher transmission loss in the
stiffness-controlled region. At higher frequencies, the curves merge together in the mass-controlled region
since both panels have the same weight per unit area.

Concluding Remarks

An improved analytical model has been developed that allows for the efficient calculation of the
noise transmission characteristics of a rectangular plate simply supported in an infinite rigid bafle.
The governing equations of the analytical model have been derived. Sample calculations comparing the
analytical model to infinite-panel theory and showing the usefulness of the analytical model in studying
noise transmission have been presented.

[lustrated examples were given of how the model can be used to determine the effect on the transmitted
noise of varying the angle of the incident plane wave and to determine far-field directivity of the transmitted
noise. Also, examples were given of how the model can be used to determine the modal behavior of a
rectangular plate. These included the determination of which modes dominate the noise transmission,
the coupling between the incident noise and plate vibrations, the resonance behavior of the plate, and the
coupling between the plate vibrations and the transmitted noise.

The applicability of the model to symmetrically layered composite panels has also been demonstrated.
Although the analysis approach was developed to study noise transmission into aircraft fuselages, it
should be equally applicable to sound transmission through building walls, floors, and windows. Overall,
the analytical model was shown to be a versatile and useful tool.

NASA Langley Research Center
Hampton, VA 23665
November 21, 1984
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Figure 1. Geometry on incident side of plate.
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Figure 2. Geometry on radiating side of plate.
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Figure 3. Transmitted-intensity variation in #-direction for 1.52-m by 1.22-m by 0.081-cm aluminum plate.
0; = 45° ¢, = 0°% ¢ =0°.
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Figure 4. Transmitted-intensity
0; = 45°; ¢, =0° 0 = 45°,
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variation in ¢-direction for 1.52-m by 1.22-m by 0.081-cm aluminum plate.
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Figure 5. Transmitted-intensity variation in ¢-direction for 1.52-m by 1.22-m by 0.081-cm aluminum plate for
f =600 Hz. 0, = 60°;, ¢, = 47°; 0 = 20°.
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Figure 6. Transmitted-intensity variation in ¢-direction for 1.52-m by 1.22-m by 0.081-cm aluminum plate for
m=1, n=11, and f = 600 Hz. 6, = 60°;, ¢, = 47°; 6 = 20°.
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Figure 10. Variation of square root of transmitted intensity in #-direction for 1.52-m by 1.22-m by 0.081-cm
aluminum plate. 8, = 60°; ¢; = 0°; ¢ = 0°; f = 600 Hz.
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